

Deriving soil guideline values, with a focus on

Jo Cavanagh

lead


Purpose of soil guideline values

Indication of potential effects on....

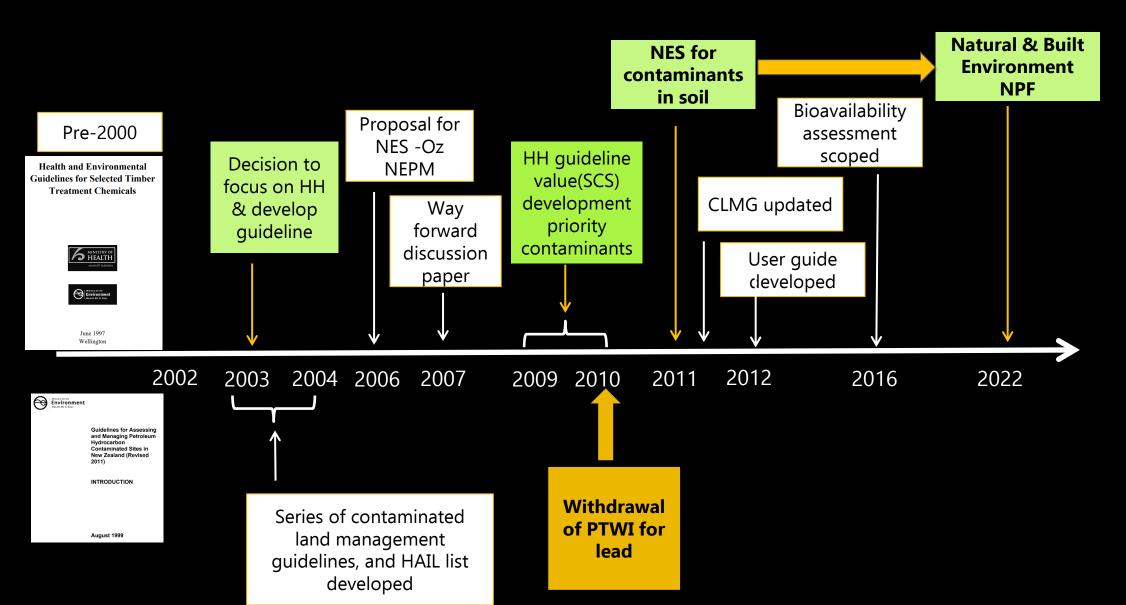
Human health

Terrestrial ecological receptors

Aquatic ecological receptors/aquatic systems

• Derived through AGREED processes, related to policy context of use

Purpose of soil guideline values


• Indication of potential effects on....

Human health

• Derived through AGREED processes, related to policy context of use

Setting the scene.....

Deriving soil guideline values for HH $\ddot{m{O}}$

- Toxicological effects
 - Threshold e.g.
 neurodevelopmental effects
 - Non-threshold e.g. cancer

Current soil contaminant standards

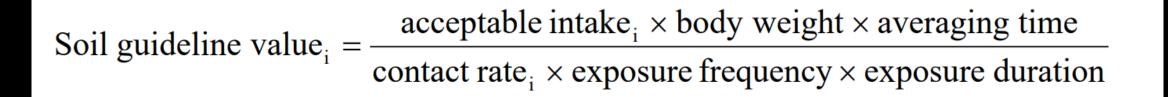
• Toxicological effect

Toxicological Intake Values for Priority Contaminants in Soil Exposure

Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health

Toxicological endpoint for lead

- FAO/WHO Expert Committee on Food Additives (JECFA) Provisional Tolerable Weekly Intake (PTWI) of 0.025 mg/kg bw for child and infants established in 1986
- Extended to adults in 1993
- Reconfirmed in 2000
 - most sensitive effect reduced cognitive function and intellectual performance in children
- WITHDRAWN June 2010
 - No safe threshold below which effects are observed
 - JECFA recommendations to use modelling as a guide for magnitude of effect at a given dose
 - At PTWI effects insignificant at individual level, but significant at population level


Table 30: Recommended toxicological criteria for inorganic lead

Parameter		Value	Basis	
Contaminant status		Threshold	Refer to weight of evidence	
Oral index dose	e (μg/kg bw per day)	1.9	Dose-response modelling by FAO/W (2010) that indicated this level of exp may give rise to decreased IQ at a p level, but effects were considered in at an individual level.	posure population
Inhalation intak	e	NA	Lack of volatility of inorganic lead in inhalation exposure is negligible	dicates
Skin absorption	n factor	NA	Available data indicate that dermal a of inorganic lead is negligible (Guy e 1999)	
Background ex	posure (µg/kg bw per day) or [per week]	0.97 [6.7] 0.41 [2.85]	Child (1–3 years) Adult (25+ years) Dietary intake (Davies et al, 2001; V and Thomson, 2005)	′annoort
NA – not applica	able.			
Food 2005 0.85 ug 2016 0.55 ug			w/week	Water intake 2001 477,000 > N 2021 17,000 > M/

Factors influencing intake

- Bioavailability
 - as the fraction of ingested dose that reaches the systemic circulation
- Bioaccessible
 - the fraction of the contaminant that is mobilised from the ingested material (whether this be soil, food etc.) into the digestive juice (i.e. chyme)
 - Conservative estimate of bioavailability can be measured in lab
- Current SGV assumes 100% bioavailability
 - because of the absence of a valid model to predict blood lead concentrations for New Zealand, and the suggested absence of a threshold of effect for neurodevelopmental impairment

Generic equation

- Child = critical receptor for threshold contaminants
- Lifetime (30 years) exposure for non-threshold = combined child and adult exposure
- All parameters **agreed** for different land use scenarios
- Actual use of the site may be different

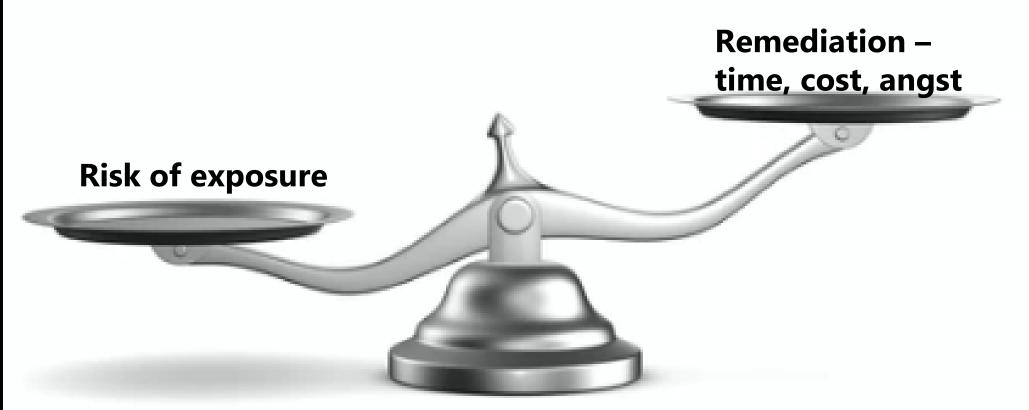
Selected exposure parameters

Land use	Soil ingestion rate (mg/day)	Exp freq (days/yr)
Rural residential (25% home- grown produce consumed)	50 (25)	350
Residential (10% home- grown produce consumed)	50 (25)	350
High density residential	25 (15)	350
Recreation	25 (75)	200
Commercial/industrial worker	50	240 (48 weeks)

- Child body-weight 15 kg
- Adult body-weight 70 kg

Soil contaminant standards

Land use	Soil contaminant standard (mg/kg)
Rural residential (25% home- grown produce consumed)	160
Residential (10% home-grown produce consumed)	210
High density residential	500
Recreation	880
Commercial/industrial worker	3300


International approaches to SGVs

- \bigcirc
- Australian, Dutch, Canadian SGVs still based on JECFA PTWI
- US EPA rule (2001)
 - Bare residential soil 400 mg/kg in play areas, and 1,200 mg/kg for bare soil in the rest of the yard modelled exposure IEUBK
 - [since 2018 greater focus on dust-lead levels]
- UK C4SLs (2014)
 - modified approach to base exposure to blood-lead level based on blood-lead level of 3.5 ug/dL using IEUBK to derive intake level used in CLEA
 - Allotments 30-84 mg/kg, residential 82-330 mg/kg

What does it mean if SCS is exceeded?

- "SCSs(health) may be applied as:
 - Tier 1 or screening criteria;
 - as **conservative** clean-up targets,
 - to inform on-site management actions;
 - or to trigger further investigation within a Tier 2 assessment"
- SCS based on **agreed** exposure parameters for different land use scenarios
- Actual use of the site may be different

Getting the balance right

Proportionate response to risk required

BUT there is a disconnect between soil lead concentrations, blood-lead level and decision-making based on risk (inc other sources of exposure)

Summary

- Toxicological intake value set in 2010
- Background exposures appear to be reducing
- Increased awareness of effects occurring at low blood-lead levels
 - E.g NZ blood lead notification level reduced in 2021
 - Concern is at population level rather than individual level
- Substantial data on health effects related to blood lead level
 - Various models to relate intake to blood lead level e.g. IEUBK
- In NZ, remains a disconnect between soil lead concentrations, blood-lead level and risk-based decision-making at sites where elevated lead concentrations are observed