Design considerations for steep wall liners in landfills

Simonne Eldridge Jonathan Shamrock

Introduction

- Disused quarries, or active quarries seeking post use rehabilitation by filling, are increasingly being used for landfills as available/ acceptable greenfield options become limited
- These quarries often have steep cut slopes which require a barrier system to be installed on them
- Leakage through a barrier system is proportional to the liquid head above the barrier
- On steep quarry walls, with a leachate drainage system, very low leachate heads and leakage are thus expected

HDPE geomembrane barrier

- The HDPE geomembrane therefore becomes the critical component of the landfill barrier system
- However, MSW undergoes significant settlement (~25%) as it is loaded by subsequent waste lifts and as it degrades, resulting in considerable strain of the waste adjacent to the barrier system
- The effects of this strain are exacerbated on steep wall barrier systems
- The designer needs to ensure the barrier system can accommodate this strain

Barrier system design

- The design of the steep wall liner barrier system's components must therefore address:
 - The required puncture resistance of the protection geotextile to the leachate drainage stone above the barrier
 - The required geometry/tensile capacity of the anchor trench
 - Overall waste body stability
 - Sub-grade conditions to avoid direct stresses on the geomembrane
 - The potential stress in the barrier system components during installation, placement of waste, and as a result of ongoing waste consolidation and settlement

Minimising stresses from waste consolidation

- Construct uniform formation and slope heights
- Ensure stresses are taken out above the liner system, by introducing a slip surface, typically using a monotextured geomembrane, textured below, smooth above
- Manage tensile forces in protection geotextile on slip surface, impact of differential settlement, inclusion of geogrid layer

Groundwater drainage

- In a fractured rockmass, groundwater can compromise the stability of the barrier system if it is not adequately addressed
- A solution that has been successfully used in Hong Kong and New Zealand, is to include a no-fines concrete layer which has a twofold function:
 - Provides a smooth surface for supporting the HDPE geomembrane which eliminates stress concentrations from a potentially uneven subgrade
 - Ensures adequate drainage beneath the geomembrane

Barrier system – no fines concrete support

Leachate drainage

Case study 1: No fines support

- Steep rock slopes are on 1V in 0.5H with a 6 m inter-bench height
- The greywacke rock quality varies from fresh rock through to fractured and slightly weathered
- On completion, the total waste depth will be in the order of 100 m

No fines cast against excavated face

No fines completed subgrade

Protection geotextile installation

Geomembrane installation

Geomembrane welding

Case study 2: Spray concrete support

- Steep rock slopes are on 1V in 0.25H with a 10 m inter-bench height
- The greywacke rock quality varies from fresh rock through to fractured and slightly weathered
- On completion, the total waste depth will be in the order of 60 m
- Groundwater drainage accommodated by strip drains installed at 45 degrees to the rock face

Spray concrete support

Quarry stabilisation

Quarry excavation surface preparation

Hook bolts, strip drains, supporting mesh, screed rails

Panel installation between screed rails

Completed shotcrete subgrade

Geomembrane installation

Protection and leachate drainage layer installation

Filling

Staged construction as waste filling progresses

Case study 3: Soft rock excavation

- Steep excavated soft rock slopes are on 1V in 0.5H with a 10 m inter-bench height, 5 m wide benches
- First bench in excavated soft fine grained rock
- Upper lifts, in more blocky weathered material, to have steep compacted clay liner installed

Excavation into in-situ weathered siltstone

Subgrade preparation fine grained soft rock

Composite GCL/HDPE installation

Protection geotextile and geogrid

Thank you

Simonne Eldridge – seldridge@tonkintaylor.co.nz Jonathan Shamrock – jshamrock@tonkintaylor.co.nz

