

How biochar can save the world...

Isobel Stout - PDP

New ideas pass through three periods:

- 1) It can't be done.
- 2) It probably can be done, but it's not worth doing
- 3) I knew it was a good idea all along!

Arthur C Clarke

A body of knowledge that has been accumulated over time and develops and grows in response to our changing world.

Mātauranga Māori

- Taking a genuinely holistic approach, observing, listening, building on what has gone before.
- Practices of tapu and noa support natural processes that resolve environmental damage.

Fig. 3 Pyrolysis temperature effect on biochar: a amorphous carbon; b turbostratic carbon; c graphite carbon

- Huge surface area
- Reactive surface area
- Carbon storage
- Holds water
- Stable
- 'Natural'

What is biochar?

The product of pyrolysis of biomass (carbon rich matter)

- pine tree slash
- vine prunings
- biosolids
- animal manure
- rice husks
- straw
- sawdust
- nut shells
- wood waste
- garden waste

even plastic waste...

- The physical makeup of biochar with many micro or nano pores – huge surface area
- The pores can house microbes that can 'eat' pollutant molecules
- The surface holds functional chemical groups and their range and type can be manipulated
- The source of biomass and the method of pyrolysis affects the efficiency of all three factors

Operating parameters

Fig. 2 Mechanisms of metal cations (e.g. Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺, Zn²⁺) and oxyanions (e.g. PO₄ ³⁻, AsO₄ ³⁻) sorption to biochar prepared by pyrolysis at high temperature (> 450 °C) and low temper-

ature (<450 °C) (Reproduced with permission from Sizmur et al. (2017), Bioresource Technology 246 (2017) 34-47)

CLAUDELANDS, HAMILTON

CLAUDELANDS, HAMILTON

Nurture the seed and it will bloom

Poipoia te kākano kia puāwai

