

Leachate management during catastrophic weather conditions

→ Adrian Roberts

Technical Director – Waste Management

Commonwealth of Australia 2022, Bureau of Moteorology

Have a logical site development plan

Site staging plans should:

- Maintain landfill capacity
- Minimise potential for stormwater run-on
 - Landfill cell location
 - Order of filling
- Minimise potential for leachate generation
 - Optimum cell footprint size
 - Reduce area of interim cover and interim batters

Case study 1

- Cells historically developed and filled "out of order" resulting in large areas of interim batter
- Low filling rate resulting in exposed leachate collection system

Have a realistic leachate management plan

Leachate management plans and leachate water balances should :

- Include all sources of leachate (many don't!)
- The site's current and future arrangements (do you have a final landform?)
- Include realistic storage and disposal options (spray and pray)
- Be calibrated with collected site data
- Be regularly reviewed and recalibrated (changing climate, materials and site operations)

Site water balance can identify:

- When more storage, treatment or disposal capacity is required
- Which operational or design improvements will be effective
- Stages of site development when contingency measures may be required

Gather site data

Quantity data for sizing infrastructure Quality data for assessing treatment and disposal options

Quantity will change over time:

- Weather
- Landfill footprint
- Landfill operation
- Landfill design

Quality will change over time:

- Type of waste
- Age of waste
 - Phase I = initial adjustment
 - Phase II = transition phase
 - Phase III = acid phase
 - Phase IV = methane fermentation
 - Phase V = maturation phase

Case study 2

Case study 2

- Develop site leachate flow diagram to understand typical and emergency operating arrangements
- Comparison of historical BOM data and site collected weather data
- Estimation of rainfall infiltration through all cover and cap scenarios (HELP)
- Developed a site water balance model for a range of climatic conditions
- Undertook calibration of model using historical leachate collection, treatment and disposal volumes
- Used calibrated model to estimate future storage, treatment and disposal requirements

Net leachate generation volume

Operational storage volume

٠

Leachate treatment capacity

Temporary leachate level fluctuation

WasteMINZ 2025 | Roberts I © 2023 GHD. All rights reserved.

Emergency storage volume

Case study 3

- Large areas of historically filled areas not capped
- Limited understanding of site performance
- Relied on evaporation for leachate disposal
- Sewerage treatment plant has insufficient capacity during extended wet weather
- Design and construction of additional storage pond was fast-tracked – high cost

Is your contingency plan reliable and practical?

Do you understand the financial implications?

Maintain good site management

- Reducing active tip face areas
- Inspecting and repairing interim cover and capping as required
- Improving interim cover practices placement and removal
- Avoid exposed leachate collection systems

Maintain good site management

- Good upstream diversion systems, where they are required
- Good downstream containment systems, to prevent mixing with surface water

Maintain good site management

- Keep pumping equipment in good condition
- Install remote controls, alarms, instrumentation
- Maintain appropriate freeboard

Our changing climate

WasteMINZ 2025 | Roberts | © 2023 GHD. All rights reserved.

Our changing climate

NIWA (2024) Annual Climate Summary 2024

Annual maximum one-day rainfall trends for 30 New Zealand sites, 1960-2022

Our changing climate

A projected rainfall intensity or equivalent depth (I_p) can be obtained by:

$$I_p = I_{ARR} \times 1.05^{T_m}$$

I_{ARR} is the design rainfall intensity for current climate conditions

 $T_{\rm m}$ is the a measure of temperature increase

	Projected rainfall intensity increase
1.5 ℃	8%
3℃	16%

Figure 13: Projected changes in average rainfall for the Metropolitan Sydney Region, annually and by season (2030 yellow; 2070 red).

Nathan, R and Weinmann, E, 2019, Estimation of Very Rare to Extreme Floods, Book 6 in Australian Rainfall and Runoff - A Guide to Flood Estimation, Commonwealth of Australia

NSW Office of Environment and Heritage, 2021, Metropolitan Sydney Climate change snapshot WasteMINZ 2025 | Roberts | © 2023 GHD. All rights reserved.

- Build a model with input climate based on historical observations
- Run model using a simulated climate based on historical observations (baseline)
- Run model with various climate futures
- Compare baseline to future scenarios to understand risk
- Design infrastructure based on risk profile

Lessons learnt

- Contingency plans may not be available during an extreme weather events
- Existing plans are not always followed and/or fail to deal with extreme events adequately
- Existing modelling/water balances fail to account for all sources during extreme events or assume linear increase
- Capping cost assessments do not consider the leachate disposal costs

Leachate disposal costs

Has my capping assessment considered leachate disposal?

Example modelling of leachate disposal for a generic landfill in Christchurch

Modelling assumptions:

- Hydrologic Evaluation of Landfill Performance (HELP) Model
- Type 2/3 WasteMINZ guideline cap
- Christchurch data (median = 630mm)
- Median year selected from modelled output
- Variables unchanged except evapotranspiration

What is the cost implication?

- Assuming \$90-\$150 per kL truck + disposal
- 10% reduction in leachate generation
- \$57K to \$95K per Ha per annum

What is my return on investment? What if my median rainfall is much higher? What if rainfall increases?

Summary

- Prepare for extreme weather conditions
- Have practical options for storage and disposal
- Consider the changing climate

*** Thank You**

CONTACT

Adrian Roberts

Technical Director – Waste Management

- Email: adrian.roberts@ghd.com
- Phone: +61 2 9239 7307