Generation of Contaminant Standards

What is a soil contaminant standard?

They are a concentration threshold (mg/kg dry weight soil) at which certain actions are recommended or enforced. They are usually at a concentration where there is a potential calculated risk to human health or the environment.

Target Value

Intervention Value

Screening Value

Soil Guideline Value

Cleanup Value

Trigger Value

Reference Value

Basis Equation for SCS

```
Intake\ rate\ (bw.day) = \frac{soil\ concentration\ x\ contact\ rate\ x\ exposure\ frequency\ x\ exposure\ duration}{body\ weight\ x\ averaging\ time}
```

Contact rate = values for pathway (ingestion rate, inhalation rate etc)

Exposure frequency = days/year

Exposure duration = years

Body weight = kg

Averaging time = exposure duration x 365 (threshold substance)

= life time (75 yrs) x 365 = 27,375 days (non-threshold substance)

Basis Equation for SCS

Intake rate is compared to an acceptable intake rate for the substance.

Acceptable intake rate

- Tolerable daily intake (TDI) for threshold compounds
- Dose that yields a specified increased cancer risk (in NZ = one additional cancer in 1,000,000 people (10^{-5}))

Basis Equation for SCS

```
SCS = \frac{acceptable\ intake\ x\ body\ weight\ x\ averaging\ time}{contact\ rate\ x\ exposure\ frequency\ x\ exposure\ duration}
```

```
Acceptable intake = varies for pathway and substance (mg/kg)

Exposure frequency = days/year

Exposure duration = years

Body weight = kg

Averaging time = exposure duration x 365 (threshold substance)

= life time (75 yrs) x 365 = 27,375 days (non-threshold substance)
```


Pathway Specific Equations (Threshold)

DERMAL ABSORPTION

ABSORBING CONTAMINANTS THROUGH SKIN

- Body weight BW
- Skin area AR
- Soil loading on skin AH
- Contaminant's ability to pass from soil through skin AF
- How frequently people are exposed to contaminated soil EF

ACCEPTABLE INTAKE OF CONTAMINANT RHS

- Contaminant dose that is unlikely to have significant effect on health TIV
- Intake from sources other than soil BI

SOIL INGESTION

SWALLOWING DIRT AND DUST

- Body weight BW
- Proportion of contaminant taken up by the body when soil is ingested (bioavailability) BA
- Daily amount of soil ingested IR
- How frequently people are exposed to contaminated soil EF

ACCEPTABLE INTAKE OF CONTAMINANT RHS

- Contaminant dose that is unlikely to have significant effect on health TIV
- Intake from sources other than soil BI

DUST INHALATION

INHALING DUST INTO THE LUNGS

- Body weight BW
- Proportion of soil fine enough to become dust
 PEF
- Daily amount of air inhaled IH

- How frequently people are exposed to contaminated soil EF
- Proportion of dust retained in lungs R

ACCEPTABLE INTAKE OF CONTAMINANT RHS

- Contaminant dose that is unlikely to have significant effect on health TIV
- Intake from sources other than soil BI

PRODUCE CONSUMPTION EATING HOME-GROWN VEGETABLES

- Body weight BW
- Vegetable consumption IP
- Proportion of vegetables that are home-grown P.
- Contaminant's ability to pass from soil into vegetables BCF
- Amount of soil on vegetables SL

- Proportion of contaminant taken up by the body when soil is ingested (bioavailability) BA
- Proportion of roots, tubers, leafy vegetables grown p

(roots, tubers and leafy vegetables considered separately)

ACCEPTABLE INTAKE OF CONTAMINANT RHS

- Contaminant dose that is unlikely to have significant effect on health TIV
- Intake from sources other than soil BI

PRODUCE CONSUMPTION

- Body weight BW
- Vegetable consumption IP
- Proportion of vegetables that are home-grown P_−
- Contaminant's ability to pass from soil into vegetables BCF
- Amount of soil on vegetables SL
- Proportion of contaminant taken up by the body when soil is ingested (bioavailability) BA
- Proportion of roots, tubers, leafy vegetables grown p

(roots, tubers and leafy vegetables considered separately)

$$SGV_p = \frac{RHS \times BW \times 27375}{IP \times Pg \times EF \times \sum_{root, tuber, leafy} (BCF + SL \times BA) \times p}$$

SOIL INGESTION SWALLOWING DIRT AND DUS

- Body weight BW
- Proportion of contaminant taken up by the body when soil is ingested (bioavailability) BA
- Daily amount of soil ingested IR
- How frequently people are exposed to contaminated soil EF

$$SGV_{lng} = \frac{RHS \times BW \times 365,000,000 \times BA}{IR \times EF}$$

ACCEPTABLE INTAKE OF CONTAMINANT RHS

- Contaminant dose that is unlikely to have significant effect on health TIV
- Intake from sources other than soil BI

RHS = TIV - BI

THRESHOLD CONTAMINANTS

$$SGV = \frac{1}{\frac{1}{SGV_{ing}} + \frac{1}{SGV_p} + \frac{1}{SGV_d} + \frac{1}{SGV_{ih}}}$$

DERMAL ABSORPTION

ARSORRING CONTAMINANTS THROUGH SKIN

- Body weight BW
- Skin area AR
- Soil loading on skin AH
- Contaminant's ability to pass from soil through skin AF
- How frequently people are exposed to contaminated soil EF

 $SGV_d = \frac{RHS \times BW \times 365,000,000}{AD \times AF \times EF}$

DUST INHALATION INHALING DUST INTO THE LUNGS

- Body weight BW

 Proportion of soil fit
- Proportion of soil fine enough to become dust PEF
- Daily amount of air inhaled IH
- How frequently people are exposed to contaminated soil EF
- Proportion of dust retained in lungs R

 $SGV_{ih} = \frac{RHS \times BW \times PEF \times 365}{IH \times EF \times R}$

Parameters that can be varied in site-specific assessment are shown in bold

 Schematic only, not to be interpreted as an engineering design or construction drawing 2. DRAWN thr. vG.REVIEWED by: HG.

Assumptions – Lots of them

Body weight (kg) – 70kg adult, 15 kg child Exposed skin area (cm2) – Can change with PPE requirements Ingestion rate (mg/soil/day) – (25 to 100 mg/day) Proportion of vegetables home grown – What is a good estimate Exposure frequency and duration – days per year, hours per day

• • • • • • • • • • • •

<u>Assumptions</u>

Essential educated guesses about future conditions that drive decision-making and forecasting.

Examples

Site Specific SCS for Arsenic

Exposure Factor			Adopted Park User Specific Assumptions							
		Units	Child Playing in Park			Parent Supervising		Jogger A	Park	Park Groundsman
Body Weight	Scena	rio _{kg}	15		Re	Children esidential		Lifestyle		70
Exposure duration	Recep	tor Years	6		Chi	ld	A∕dult	Child		24
Averaging Time CARCINOGENS	Home	-growpaprodu	ce consum _t e	Pg		10) [%] 70	25% 70		70
Exposure frequency	Comb	ined soil guid	etine vatue	SGV	1 9		61	17 ₂₄₀	mg/kg	52
		te produka	100	 	24		10	21		100
Area of Exposed Skir	AND Re	duce ingestion b	262	50 %	48		4700	42		4700
Soil Adherence		mg/cm ²	0.5	80%	119		0.5	104		1
Inhalation rate		m3/d	3.8	3			20	20		9.6
Proportion of particles retained in lungs			0.75			0.75		0.75		0.75
Acceptable Concentration		mg/kg	83.0			132.2		130.4		62.3

Takeaways

- 1. Tier 1 SGV are conservative
- 2. Assumptions are based on whole of population data
- 3. Challenge the status quo

Warning: get calculations peer reviewed

