Southern Landfill Extension Piggyback Option (SLEPO) - An innovative 'cradle' landfill design

Absolutely Positively Wellington City Council

Outline

ТОРІС	Speaker
Project Background	Darren Hoskins
Alternative Assessment	
Piggyback Option (SLEPO)	
Innovative 'cradle' landfill design	Daniel Tan
Challenges of a piggyback landfill	
'Cradle' design	
Investigations, field trials and numerical analysis	

Absolutely Positively **Wellington** City Council

What's the issue?

June 2026:

- Landfill capacity and consents expire
- Need a solution for residual waste by this date

Absolutely Positively **Wellington** City Council

Timeline

Absolutely Positively **Wellington** City Council

Selecting a preferred option - MCA

Absolutely Positively Wellington City Council

Criteria

Te Ao Māori alignment	 Input from mana whenua for all criteria and Te Ao Maori alignment is still ongoing
Impact	 2. Emission Levels 3. Environmental effects (waste, land and air)
Planning	 4. Level of consent and planning risk 5. Size - ability to fit on existing site 6. Scalability (to support wate minimisation), 7. Timeframe for the solution
Community	8. Local community effects 9. Community connection 10.Resilience in cases of emergency
Technical	11.Technical maturity 12.Robustness/reliability of solution
Financial	13.Support for a circular economy 14.Value for money

How the options stacked up

Annual Plan Public Consultation - outcome

Absolutely Positively **Wellington** City Council

Sludge

- 15,000 tonnes per year
- Mixed 1:4 with waste
- New Moa Point Sludge
 Minimisation Facility
- Enables resource recovery

Absolutely Positively **Wellington** City Council

Waste Minimisation

Reduce waste to landfill

Resource Recovery initiatives

Source: Zero Waste

Absolutely Positively Wellington City Council

Residual Waste Working Group

- Community representatives
- Building trust & integrity
- Supported resource consent

Absolutely Positively **Wellington** City Council

Resource consent

- 35-year consent granted
- 200 conditions
- Community Advisory Group
 established
- Construction underway

Absolutely Positively Wellington City Council

Construction of SLEPO

Absolutely Positively **Wellington** City Council

Construction of SLEPO

Absolutely Positively **Wellington** City Council

Note: Green shows the landform only and not the final use.

100

Innovative 'Cradle' Landfill Design

Daniel Tan, Tonkin & Taylor

Challenges

- "Piggyback" Over existing closed landfill
- i. Old unlined landfill
- ii. Complex hydrogeology

- iii. Settlement of old waste
- iv. Landfill gas from old landfill

Absolutely Positively Wellington City Council

Challenges

- 2km from Wellington Fault
- i. Seismic consideration
- ii. Landfill stability

Innovative 'Cradle' Landfill Design

Absolutely Positively **Wellington** City Council

Earthworks to form landfill basegrade

Conventional	'Cradle' Design
Cut to form basegrade	Fill to form basegrade
Excavation of whole slope required from top to bottom	Fill from bottom up. Does not require unnecessary vegetation clearance and exposure of soil
Fix slope and bench height is required	Slope and bench height is flexible and can be varied subject to time, air space requirement and budget
Require significant vegetation clearance and soil exposure beyond landfill footprint.	Limited vegetation clearance and soil exposure beyond landfill footprint.

Absolutely Positively **Wellington** City Council

Earthworks to form landfill basegrade

Conventional	'Cradle' Design
Cut to form basegrade	Fill to form basegrade
Excavation of whole slope required from top to bottom	Fill from bottom up. Does not require unnecessary vegetation clearance and exposure of soil
Fix slope and bench height is required	Slope and bench height is flexible and can be varied subject to time, air space requirement and budget
Require significant vegetation clearance and soil exposure beyond landfill footprint.	Limited vegetation clearance and soil exposure beyond landfill footprint.

Absolutely Positively **Wellington** City Council

Protect landfill lining from seismic impact

Conventional	'Cradle' Design
Landfill liner sits directly on natural ground	There is a soil layer between the landfill liner and natural ground
Ground movement from secondary fault rupture or seismic shaking will have direct impact on the landfill liner	The soil layer acts as a buffer between ground movement and reduce the impact on the landfill liner limiting the strain on the HDPE liner to less than 3%

Absolutely Positively **Wellington** City Council

Leachate leak detection, collection and removal

Conventional

Any potential leakage through the landfill liner will come into direct contact with natural ground and subsequently groundwater

'Cradle' Design

The soil layer between the landfill liner and natural ground forms a preferential flow path for any potential leakage through the landfill liner, making its way downslope and collected in a groundwater drainage system that doubles as a leachate leak detection, collection and removal system

Absolutely Positively **Wellington** City Council

Leachate leak detection, collection and removal

Conventional

Any potential leakage through the landfill liner will come into direct contact with natural ground and subsequently groundwater

'Cradle' Design

The soil layer between the landfill liner and natural ground forms a preferential flow path for any potential leakage through the landfill liner, making its way downslope and collected in a groundwater drainage system that doubles as a leachate leak detection, collection and removal system

Absolutely Positively **Wellington** City Council

'Cradle' design numerical analysis and field trial

Figure 4.2: Type B sidewall liner trial construction

Overall Piggyback Landfill Stability Assessment - Investigations

MAM Southern Landfill HVSR.so

DRAWN
CHECKE

Absolutely Positively **Wellington** City Council

Overall Piggyback Landfill Stability Assessment -Numerical analysis

4

Overall Piggyback Landfill Stability Assessment -Leachate pumping trial

- 5 wells drilled for pumping trial
- Assess viability of leachate pumping of old / closed landfill
- Control leachate level within Stage 2 closed landfill
- Contingency plan to pump leachate if required (due to leakage or for stability requirement)
- Dual function as gas collection

Redundancy in leachate leak detection, collection and removal system

Q&A?

